Inverse Problems: Fuzzy Representation of Uncertainty Generates a Regularization
نویسندگان
چکیده
In many applied problems (geophysics, medicine, astronomy, etc) we cannot directly measure the values x(t) of the desired physical quantity x in different moments of time, so we measure some related quantity y(t), and then we try to reconstruct the desired values x(t). This problem is often ill-posed in the sense that two essentially different functions x(t) are consistent with the same measurement results. So, in order to get a reasonable reconstruction, we must have some additional prior information about the desired function x(t). Methods that use this information to choose x(t) from the set of all possible solutions are called regularization methods. In some cases, we know the statistical characteristics both of x(t) and of the measurement errors, so we can apply statistical filtering methods (well-developed since the invention of a Wiener filter). In some situations, we know the properties of the desired process, e.g., we know that the derivative of x(t) is limited by some number ∆, etc. In this case, we can apply standard regularization techniques (e.g., Tikhonov’s regularization). In many cases, however, we have only uncertain knowledge about the values of x(t), about the rate with which the values of x(t) can change, and about the measurement errors. In these cases, usually one of the existing regularization methods is applied. There exist several heuristics that choose such a method. The problem with these heuristics is that they often lead to choosing different methods, and these methods lead to different functions x(t). Therefore, the results x(t) of applying these heuristic methods are often unreliable. We show that if we use fuzzy logic to describe this uncertainty, then we automatically arrive at a unique regularization method, whose parameters are uniquely determined by the experts knowledge. Although we start with the fuzzy description, but the resulting regularization turns out to be quite crisp.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملAn MCMC Method for Uncertainty Quantification in Nonnegativity Constrained Inverse Problems
The development of computational algorithms for solving inverse problems is, and has been, a primary focus of the inverse problems community. Less studied, but of increased interest, is uncertainty quantification for solutions of inverse problems obtained using computational methods. In this paper, we present a method of uncertainty quantification for linear inverse problems with nonnegativity ...
متن کاملA Sparse Bayesian Estimation Framework for Conditioning Prior Geologic Models to Nonlinear Flow Measurements
We present a Bayesian framework for reconstruction of subsurface hydraulic properties from nonlinear dynamic flow data by imposing sparsity on the distribution of the solution coefficients in a compression transform domain. Sparse representation of the subsurface flow properties in a compression transform basis lends itself to a natural regularization approach, i.e. sparsity regularization, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014